Metamath Proof Explorer


Theorem lmhmsca

Description: A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmlem.k K=ScalarS
lmhmlem.l L=ScalarT
Assertion lmhmsca FSLMHomTL=K

Proof

Step Hyp Ref Expression
1 lmhmlem.k K=ScalarS
2 lmhmlem.l L=ScalarT
3 1 2 lmhmlem FSLMHomTSLModTLModFSGrpHomTL=K
4 3 simprrd FSLMHomTL=K