Metamath Proof Explorer


Theorem lmhmlin

Description: A homomorphism of left modules is K -linear. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmlin.k K=ScalarS
lmhmlin.b B=BaseK
lmhmlin.e E=BaseS
lmhmlin.m ·˙=S
lmhmlin.n ×˙=T
Assertion lmhmlin FSLMHomTXBYEFX·˙Y=X×˙FY

Proof

Step Hyp Ref Expression
1 lmhmlin.k K=ScalarS
2 lmhmlin.b B=BaseK
3 lmhmlin.e E=BaseS
4 lmhmlin.m ·˙=S
5 lmhmlin.n ×˙=T
6 eqid ScalarT=ScalarT
7 1 6 2 3 4 5 islmhm FSLMHomTSLModTLModFSGrpHomTScalarT=KaBbEFa·˙b=a×˙Fb
8 7 simprbi FSLMHomTFSGrpHomTScalarT=KaBbEFa·˙b=a×˙Fb
9 8 simp3d FSLMHomTaBbEFa·˙b=a×˙Fb
10 fvoveq1 a=XFa·˙b=FX·˙b
11 oveq1 a=Xa×˙Fb=X×˙Fb
12 10 11 eqeq12d a=XFa·˙b=a×˙FbFX·˙b=X×˙Fb
13 oveq2 b=YX·˙b=X·˙Y
14 13 fveq2d b=YFX·˙b=FX·˙Y
15 fveq2 b=YFb=FY
16 15 oveq2d b=YX×˙Fb=X×˙FY
17 14 16 eqeq12d b=YFX·˙b=X×˙FbFX·˙Y=X×˙FY
18 12 17 rspc2v XBYEaBbEFa·˙b=a×˙FbFX·˙Y=X×˙FY
19 9 18 syl5com FSLMHomTXBYEFX·˙Y=X×˙FY
20 19 3impib FSLMHomTXBYEFX·˙Y=X×˙FY