Metamath Proof Explorer


Theorem lmhmlin

Description: A homomorphism of left modules is K -linear. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmlin.k K = Scalar S
lmhmlin.b B = Base K
lmhmlin.e E = Base S
lmhmlin.m · ˙ = S
lmhmlin.n × ˙ = T
Assertion lmhmlin F S LMHom T X B Y E F X · ˙ Y = X × ˙ F Y

Proof

Step Hyp Ref Expression
1 lmhmlin.k K = Scalar S
2 lmhmlin.b B = Base K
3 lmhmlin.e E = Base S
4 lmhmlin.m · ˙ = S
5 lmhmlin.n × ˙ = T
6 eqid Scalar T = Scalar T
7 1 6 2 3 4 5 islmhm F S LMHom T S LMod T LMod F S GrpHom T Scalar T = K a B b E F a · ˙ b = a × ˙ F b
8 7 simprbi F S LMHom T F S GrpHom T Scalar T = K a B b E F a · ˙ b = a × ˙ F b
9 8 simp3d F S LMHom T a B b E F a · ˙ b = a × ˙ F b
10 fvoveq1 a = X F a · ˙ b = F X · ˙ b
11 oveq1 a = X a × ˙ F b = X × ˙ F b
12 10 11 eqeq12d a = X F a · ˙ b = a × ˙ F b F X · ˙ b = X × ˙ F b
13 oveq2 b = Y X · ˙ b = X · ˙ Y
14 13 fveq2d b = Y F X · ˙ b = F X · ˙ Y
15 fveq2 b = Y F b = F Y
16 15 oveq2d b = Y X × ˙ F b = X × ˙ F Y
17 14 16 eqeq12d b = Y F X · ˙ b = X × ˙ F b F X · ˙ Y = X × ˙ F Y
18 12 17 rspc2v X B Y E a B b E F a · ˙ b = a × ˙ F b F X · ˙ Y = X × ˙ F Y
19 9 18 syl5com F S LMHom T X B Y E F X · ˙ Y = X × ˙ F Y
20 19 3impib F S LMHom T X B Y E F X · ˙ Y = X × ˙ F Y