Description: A homomorphism of left modules is K -linear. (Contributed by Stefan O'Rear, 1-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmhmlin.k | |
|
lmhmlin.b | |
||
lmhmlin.e | |
||
lmhmlin.m | |
||
lmhmlin.n | |
||
Assertion | lmhmlin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlin.k | |
|
2 | lmhmlin.b | |
|
3 | lmhmlin.e | |
|
4 | lmhmlin.m | |
|
5 | lmhmlin.n | |
|
6 | eqid | |
|
7 | 1 6 2 3 4 5 | islmhm | |
8 | 7 | simprbi | |
9 | 8 | simp3d | |
10 | fvoveq1 | |
|
11 | oveq1 | |
|
12 | 10 11 | eqeq12d | |
13 | oveq2 | |
|
14 | 13 | fveq2d | |
15 | fveq2 | |
|
16 | 15 | oveq2d | |
17 | 14 16 | eqeq12d | |
18 | 12 17 | rspc2v | |
19 | 9 18 | syl5com | |
20 | 19 | 3impib | |