Metamath Proof Explorer


Theorem lmhmlin

Description: A homomorphism of left modules is K -linear. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmlin.k
|- K = ( Scalar ` S )
lmhmlin.b
|- B = ( Base ` K )
lmhmlin.e
|- E = ( Base ` S )
lmhmlin.m
|- .x. = ( .s ` S )
lmhmlin.n
|- .X. = ( .s ` T )
Assertion lmhmlin
|- ( ( F e. ( S LMHom T ) /\ X e. B /\ Y e. E ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) )

Proof

Step Hyp Ref Expression
1 lmhmlin.k
 |-  K = ( Scalar ` S )
2 lmhmlin.b
 |-  B = ( Base ` K )
3 lmhmlin.e
 |-  E = ( Base ` S )
4 lmhmlin.m
 |-  .x. = ( .s ` S )
5 lmhmlin.n
 |-  .X. = ( .s ` T )
6 eqid
 |-  ( Scalar ` T ) = ( Scalar ` T )
7 1 6 2 3 4 5 islmhm
 |-  ( F e. ( S LMHom T ) <-> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ ( Scalar ` T ) = K /\ A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) ) ) )
8 7 simprbi
 |-  ( F e. ( S LMHom T ) -> ( F e. ( S GrpHom T ) /\ ( Scalar ` T ) = K /\ A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) ) )
9 8 simp3d
 |-  ( F e. ( S LMHom T ) -> A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) )
10 fvoveq1
 |-  ( a = X -> ( F ` ( a .x. b ) ) = ( F ` ( X .x. b ) ) )
11 oveq1
 |-  ( a = X -> ( a .X. ( F ` b ) ) = ( X .X. ( F ` b ) ) )
12 10 11 eqeq12d
 |-  ( a = X -> ( ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) <-> ( F ` ( X .x. b ) ) = ( X .X. ( F ` b ) ) ) )
13 oveq2
 |-  ( b = Y -> ( X .x. b ) = ( X .x. Y ) )
14 13 fveq2d
 |-  ( b = Y -> ( F ` ( X .x. b ) ) = ( F ` ( X .x. Y ) ) )
15 fveq2
 |-  ( b = Y -> ( F ` b ) = ( F ` Y ) )
16 15 oveq2d
 |-  ( b = Y -> ( X .X. ( F ` b ) ) = ( X .X. ( F ` Y ) ) )
17 14 16 eqeq12d
 |-  ( b = Y -> ( ( F ` ( X .x. b ) ) = ( X .X. ( F ` b ) ) <-> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) )
18 12 17 rspc2v
 |-  ( ( X e. B /\ Y e. E ) -> ( A. a e. B A. b e. E ( F ` ( a .x. b ) ) = ( a .X. ( F ` b ) ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) )
19 9 18 syl5com
 |-  ( F e. ( S LMHom T ) -> ( ( X e. B /\ Y e. E ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) ) )
20 19 3impib
 |-  ( ( F e. ( S LMHom T ) /\ X e. B /\ Y e. E ) -> ( F ` ( X .x. Y ) ) = ( X .X. ( F ` Y ) ) )