Metamath Proof Explorer


Theorem lmodvsinv

Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015)

Ref Expression
Hypotheses lmodvsinv.b B=BaseW
lmodvsinv.f F=ScalarW
lmodvsinv.s ·˙=W
lmodvsinv.n N=invgW
lmodvsinv.m M=invgF
lmodvsinv.k K=BaseF
Assertion lmodvsinv WLModRKXBMR·˙X=NR·˙X

Proof

Step Hyp Ref Expression
1 lmodvsinv.b B=BaseW
2 lmodvsinv.f F=ScalarW
3 lmodvsinv.s ·˙=W
4 lmodvsinv.n N=invgW
5 lmodvsinv.m M=invgF
6 lmodvsinv.k K=BaseF
7 simp1 WLModRKXBWLMod
8 2 lmodring WLModFRing
9 8 3ad2ant1 WLModRKXBFRing
10 ringgrp FRingFGrp
11 9 10 syl WLModRKXBFGrp
12 eqid 1F=1F
13 6 12 ringidcl FRing1FK
14 9 13 syl WLModRKXB1FK
15 6 5 grpinvcl FGrp1FKM1FK
16 11 14 15 syl2anc WLModRKXBM1FK
17 simp2 WLModRKXBRK
18 simp3 WLModRKXBXB
19 eqid F=F
20 1 2 3 6 19 lmodvsass WLModM1FKRKXBM1FFR·˙X=M1F·˙R·˙X
21 7 16 17 18 20 syl13anc WLModRKXBM1FFR·˙X=M1F·˙R·˙X
22 6 19 12 5 9 17 ringnegl WLModRKXBM1FFR=MR
23 22 oveq1d WLModRKXBM1FFR·˙X=MR·˙X
24 1 2 3 6 lmodvscl WLModRKXBR·˙XB
25 1 4 2 3 12 5 lmodvneg1 WLModR·˙XBM1F·˙R·˙X=NR·˙X
26 7 24 25 syl2anc WLModRKXBM1F·˙R·˙X=NR·˙X
27 21 23 26 3eqtr3d WLModRKXBMR·˙X=NR·˙X