Metamath Proof Explorer


Theorem lmodvsinv2

Description: Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses lmodvsinv2.b B=BaseW
lmodvsinv2.f F=ScalarW
lmodvsinv2.s ·˙=W
lmodvsinv2.n N=invgW
lmodvsinv2.k K=BaseF
Assertion lmodvsinv2 WLModRKXBR·˙NX=NR·˙X

Proof

Step Hyp Ref Expression
1 lmodvsinv2.b B=BaseW
2 lmodvsinv2.f F=ScalarW
3 lmodvsinv2.s ·˙=W
4 lmodvsinv2.n N=invgW
5 lmodvsinv2.k K=BaseF
6 simp1 WLModRKXBWLMod
7 lmodgrp WLModWGrp
8 6 7 syl WLModRKXBWGrp
9 simp3 WLModRKXBXB
10 eqid +W=+W
11 eqid 0W=0W
12 1 10 11 4 grprinv WGrpXBX+WNX=0W
13 8 9 12 syl2anc WLModRKXBX+WNX=0W
14 13 oveq2d WLModRKXBR·˙X+WNX=R·˙0W
15 simp2 WLModRKXBRK
16 1 4 grpinvcl WGrpXBNXB
17 8 9 16 syl2anc WLModRKXBNXB
18 1 10 2 3 5 lmodvsdi WLModRKXBNXBR·˙X+WNX=R·˙X+WR·˙NX
19 6 15 9 17 18 syl13anc WLModRKXBR·˙X+WNX=R·˙X+WR·˙NX
20 2 3 5 11 lmodvs0 WLModRKR·˙0W=0W
21 6 15 20 syl2anc WLModRKXBR·˙0W=0W
22 14 19 21 3eqtr3d WLModRKXBR·˙X+WR·˙NX=0W
23 1 2 3 5 lmodvscl WLModRKXBR·˙XB
24 1 2 3 5 lmodvscl WLModRKNXBR·˙NXB
25 6 15 17 24 syl3anc WLModRKXBR·˙NXB
26 1 10 11 4 grpinvid1 WGrpR·˙XBR·˙NXBNR·˙X=R·˙NXR·˙X+WR·˙NX=0W
27 8 23 25 26 syl3anc WLModRKXBNR·˙X=R·˙NXR·˙X+WR·˙NX=0W
28 22 27 mpbird WLModRKXBNR·˙X=R·˙NX
29 28 eqcomd WLModRKXBR·˙NX=NR·˙X