Metamath Proof Explorer


Theorem lmodvneg1

Description: Minus 1 times a vector is the negative of the vector. Equation 2 of Kreyszig p. 51. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvneg1.v V=BaseW
lmodvneg1.n N=invgW
lmodvneg1.f F=ScalarW
lmodvneg1.s ·˙=W
lmodvneg1.u 1˙=1F
lmodvneg1.m M=invgF
Assertion lmodvneg1 WLModXVM1˙·˙X=NX

Proof

Step Hyp Ref Expression
1 lmodvneg1.v V=BaseW
2 lmodvneg1.n N=invgW
3 lmodvneg1.f F=ScalarW
4 lmodvneg1.s ·˙=W
5 lmodvneg1.u 1˙=1F
6 lmodvneg1.m M=invgF
7 simpl WLModXVWLMod
8 3 lmodfgrp WLModFGrp
9 eqid BaseF=BaseF
10 3 9 5 lmod1cl WLMod1˙BaseF
11 10 adantr WLModXV1˙BaseF
12 9 6 grpinvcl FGrp1˙BaseFM1˙BaseF
13 8 11 12 syl2an2r WLModXVM1˙BaseF
14 simpr WLModXVXV
15 1 3 4 9 lmodvscl WLModM1˙BaseFXVM1˙·˙XV
16 7 13 14 15 syl3anc WLModXVM1˙·˙XV
17 eqid +W=+W
18 eqid 0W=0W
19 1 17 18 lmod0vrid WLModM1˙·˙XVM1˙·˙X+W0W=M1˙·˙X
20 16 19 syldan WLModXVM1˙·˙X+W0W=M1˙·˙X
21 1 2 lmodvnegcl WLModXVNXV
22 1 17 lmodass WLModM1˙·˙XVXVNXVM1˙·˙X+WX+WNX=M1˙·˙X+WX+WNX
23 7 16 14 21 22 syl13anc WLModXVM1˙·˙X+WX+WNX=M1˙·˙X+WX+WNX
24 1 3 4 5 lmodvs1 WLModXV1˙·˙X=X
25 24 oveq2d WLModXVM1˙·˙X+W1˙·˙X=M1˙·˙X+WX
26 eqid +F=+F
27 eqid 0F=0F
28 9 26 27 6 grplinv FGrp1˙BaseFM1˙+F1˙=0F
29 8 11 28 syl2an2r WLModXVM1˙+F1˙=0F
30 29 oveq1d WLModXVM1˙+F1˙·˙X=0F·˙X
31 1 17 3 4 9 26 lmodvsdir WLModM1˙BaseF1˙BaseFXVM1˙+F1˙·˙X=M1˙·˙X+W1˙·˙X
32 7 13 11 14 31 syl13anc WLModXVM1˙+F1˙·˙X=M1˙·˙X+W1˙·˙X
33 1 3 4 27 18 lmod0vs WLModXV0F·˙X=0W
34 30 32 33 3eqtr3d WLModXVM1˙·˙X+W1˙·˙X=0W
35 25 34 eqtr3d WLModXVM1˙·˙X+WX=0W
36 35 oveq1d WLModXVM1˙·˙X+WX+WNX=0W+WNX
37 23 36 eqtr3d WLModXVM1˙·˙X+WX+WNX=0W+WNX
38 1 17 18 2 lmodvnegid WLModXVX+WNX=0W
39 38 oveq2d WLModXVM1˙·˙X+WX+WNX=M1˙·˙X+W0W
40 1 17 18 lmod0vlid WLModNXV0W+WNX=NX
41 21 40 syldan WLModXV0W+WNX=NX
42 37 39 41 3eqtr3d WLModXVM1˙·˙X+W0W=NX
43 20 42 eqtr3d WLModXVM1˙·˙X=NX