Metamath Proof Explorer


Theorem 2ralbidv

Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 28-Jan-2006) (Revised by Szymon Jaroszewicz, 16-Mar-2007)

Ref Expression
Hypothesis 2ralbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion 2ralbidv ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 ↔ ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 2ralbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 ralbidv ( 𝜑 → ( ∀ 𝑦𝐵 𝜓 ↔ ∀ 𝑦𝐵 𝜒 ) )
3 2 ralbidv ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 ↔ ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )