Metamath Proof Explorer


Theorem ffvelrnd

Description: A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses ffvelrnd.1 ( 𝜑𝐹 : 𝐴𝐵 )
ffvelrnd.2 ( 𝜑𝐶𝐴 )
Assertion ffvelrnd ( 𝜑 → ( 𝐹𝐶 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ffvelrnd.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 ffvelrnd.2 ( 𝜑𝐶𝐴 )
3 1 ffvelrnda ( ( 𝜑𝐶𝐴 ) → ( 𝐹𝐶 ) ∈ 𝐵 )
4 2 3 mpdan ( 𝜑 → ( 𝐹𝐶 ) ∈ 𝐵 )