Metamath Proof Explorer


Theorem ffvelrnd

Description: A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses ffvelrnd.1 φ F : A B
ffvelrnd.2 φ C A
Assertion ffvelrnd φ F C B

Proof

Step Hyp Ref Expression
1 ffvelrnd.1 φ F : A B
2 ffvelrnd.2 φ C A
3 1 ffvelrnda φ C A F C B
4 2 3 mpdan φ F C B