Metamath Proof Explorer


Theorem fvoveq1d

Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022)

Ref Expression
Hypothesis fvoveq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion fvoveq1d ( 𝜑 → ( 𝐹 ‘ ( 𝐴 𝑂 𝐶 ) ) = ( 𝐹 ‘ ( 𝐵 𝑂 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 fvoveq1d.1 ( 𝜑𝐴 = 𝐵 )
2 1 oveq1d ( 𝜑 → ( 𝐴 𝑂 𝐶 ) = ( 𝐵 𝑂 𝐶 ) )
3 2 fveq2d ( 𝜑 → ( 𝐹 ‘ ( 𝐴 𝑂 𝐶 ) ) = ( 𝐹 ‘ ( 𝐵 𝑂 𝐶 ) ) )