Metamath Proof Explorer


Theorem 3anrot

Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994) (Proof shortened by Wolf Lammen, 9-Jun-2022)

Ref Expression
Assertion 3anrot ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜓𝜒𝜑 ) )

Proof

Step Hyp Ref Expression
1 3ancoma ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜓𝜑𝜒 ) )
2 3ancomb ( ( 𝜓𝜑𝜒 ) ↔ ( 𝜓𝜒𝜑 ) )
3 1 2 bitri ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜓𝜒𝜑 ) )