Metamath Proof Explorer


Theorem lveclmod

Description: A left vector space is a left module. (Contributed by NM, 9-Dec-2013)

Ref Expression
Assertion lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )

Proof

Step Hyp Ref Expression
1 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
2 1 islvec ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) )
3 2 simplbi ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )