Metamath Proof Explorer


Theorem rlmlmod

Description: The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014)

Ref Expression
Assertion rlmlmod ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )

Proof

Step Hyp Ref Expression
1 rlmval ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 2 subrgid ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) )
4 eqid ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) )
5 4 sralmod ( ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) → ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ∈ LMod )
6 3 5 syl ( 𝑅 ∈ Ring → ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ∈ LMod )
7 1 6 eqeltrid ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )