Description: The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmval | ⊢ ( ringLMod ‘ 𝑅 ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) | |
2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
3 | 2 | subrgid | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
4 | eqid | ⊢ ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) = ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) | |
5 | 4 | sralmod | ⊢ ( ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) → ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ∈ LMod ) |
6 | 3 5 | syl | ⊢ ( 𝑅 ∈ Ring → ( ( subringAlg ‘ 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ∈ LMod ) |
7 | 1 6 | eqeltrid | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |