Metamath Proof Explorer


Theorem rlmlmod

Description: The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014)

Ref Expression
Assertion rlmlmod RRingringLModRLMod

Proof

Step Hyp Ref Expression
1 rlmval ringLModR=subringAlgRBaseR
2 eqid BaseR=BaseR
3 2 subrgid RRingBaseRSubRingR
4 eqid subringAlgRBaseR=subringAlgRBaseR
5 4 sralmod BaseRSubRingRsubringAlgRBaseRLMod
6 3 5 syl RRingsubringAlgRBaseRLMod
7 1 6 eqeltrid RRingringLModRLMod