Metamath Proof Explorer


Definition df-sra

Description: Any ring can be regarded as a left algebra over any of its subrings. The function subringAlg associates with any ring and any of its subrings the left algebra consisting in the ring itself regarded as a left algebra over the subring. It has an inner product which is simply the ring product. (Contributed by Mario Carneiro, 27-Nov-2014) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Assertion df-sra subringAlg=wVs𝒫BasewwsSetScalarndxw𝑠ssSetndxwsSet𝑖ndxw

Detailed syntax breakdown

Step Hyp Ref Expression
0 csra classsubringAlg
1 vw setvarw
2 cvv classV
3 vs setvars
4 cbs classBase
5 1 cv setvarw
6 5 4 cfv classBasew
7 6 cpw class𝒫Basew
8 csts classsSet
9 csca classScalar
10 cnx classndx
11 10 9 cfv classScalarndx
12 cress class𝑠
13 3 cv setvars
14 5 13 12 co classw𝑠s
15 11 14 cop classScalarndxw𝑠s
16 5 15 8 co classwsSetScalarndxw𝑠s
17 cvsca class𝑠
18 10 17 cfv classndx
19 cmulr class𝑟
20 5 19 cfv classw
21 18 20 cop classndxw
22 16 21 8 co classwsSetScalarndxw𝑠ssSetndxw
23 cip class𝑖
24 10 23 cfv class𝑖ndx
25 24 20 cop class𝑖ndxw
26 22 25 8 co classwsSetScalarndxw𝑠ssSetndxwsSet𝑖ndxw
27 3 7 26 cmpt classs𝒫BasewwsSetScalarndxw𝑠ssSetndxwsSet𝑖ndxw
28 1 2 27 cmpt classwVs𝒫BasewwsSetScalarndxw𝑠ssSetndxwsSet𝑖ndxw
29 0 28 wceq wffsubringAlg=wVs𝒫BasewwsSetScalarndxw𝑠ssSetndxwsSet𝑖ndxw