Metamath Proof Explorer


Theorem lsslvec

Description: A vector subspace is a vector space. (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses lsslvec.x X=W𝑠U
lsslvec.s S=LSubSpW
Assertion lsslvec WLVecUSXLVec

Proof

Step Hyp Ref Expression
1 lsslvec.x X=W𝑠U
2 lsslvec.s S=LSubSpW
3 lveclmod WLVecWLMod
4 1 2 lsslmod WLModUSXLMod
5 3 4 sylan WLVecUSXLMod
6 eqid ScalarW=ScalarW
7 1 6 resssca USScalarW=ScalarX
8 7 adantl WLVecUSScalarW=ScalarX
9 6 lvecdrng WLVecScalarWDivRing
10 9 adantr WLVecUSScalarWDivRing
11 8 10 eqeltrrd WLVecUSScalarXDivRing
12 eqid ScalarX=ScalarX
13 12 islvec XLVecXLModScalarXDivRing
14 5 11 13 sylanbrc WLVecUSXLVec