Metamath Proof Explorer


Theorem lmhmlvec

Description: The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023)

Ref Expression
Assertion lmhmlvec FSLMHomTSLVecTLVec

Proof

Step Hyp Ref Expression
1 lmhmlmod1 FSLMHomTSLMod
2 lmhmlmod2 FSLMHomTTLMod
3 1 2 2thd FSLMHomTSLModTLMod
4 eqid ScalarS=ScalarS
5 eqid ScalarT=ScalarT
6 4 5 lmhmsca FSLMHomTScalarT=ScalarS
7 6 eqcomd FSLMHomTScalarS=ScalarT
8 7 eleq1d FSLMHomTScalarSDivRingScalarTDivRing
9 3 8 anbi12d FSLMHomTSLModScalarSDivRingTLModScalarTDivRing
10 4 islvec SLVecSLModScalarSDivRing
11 5 islvec TLVecTLModScalarTDivRing
12 9 10 11 3bitr4g FSLMHomTSLVecTLVec