Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
2 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
3 |
1 2
|
2thd |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LMod ↔ 𝑇 ∈ LMod ) ) |
4 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
5 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
6 |
4 5
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
7 |
6
|
eqcomd |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑇 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( Scalar ‘ 𝑆 ) ∈ DivRing ↔ ( Scalar ‘ 𝑇 ) ∈ DivRing ) ) |
9 |
3 8
|
anbi12d |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑆 ∈ LMod ∧ ( Scalar ‘ 𝑆 ) ∈ DivRing ) ↔ ( 𝑇 ∈ LMod ∧ ( Scalar ‘ 𝑇 ) ∈ DivRing ) ) ) |
10 |
4
|
islvec |
⊢ ( 𝑆 ∈ LVec ↔ ( 𝑆 ∈ LMod ∧ ( Scalar ‘ 𝑆 ) ∈ DivRing ) ) |
11 |
5
|
islvec |
⊢ ( 𝑇 ∈ LVec ↔ ( 𝑇 ∈ LMod ∧ ( Scalar ‘ 𝑇 ) ∈ DivRing ) ) |
12 |
9 10 11
|
3bitr4g |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LVec ↔ 𝑇 ∈ LVec ) ) |