| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
| 2 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
| 3 |
1 2
|
2thd |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LMod ↔ 𝑇 ∈ LMod ) ) |
| 4 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
| 5 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
| 6 |
4 5
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 7 |
6
|
eqcomd |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑇 ) ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( Scalar ‘ 𝑆 ) ∈ DivRing ↔ ( Scalar ‘ 𝑇 ) ∈ DivRing ) ) |
| 9 |
3 8
|
anbi12d |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑆 ∈ LMod ∧ ( Scalar ‘ 𝑆 ) ∈ DivRing ) ↔ ( 𝑇 ∈ LMod ∧ ( Scalar ‘ 𝑇 ) ∈ DivRing ) ) ) |
| 10 |
4
|
islvec |
⊢ ( 𝑆 ∈ LVec ↔ ( 𝑆 ∈ LMod ∧ ( Scalar ‘ 𝑆 ) ∈ DivRing ) ) |
| 11 |
5
|
islvec |
⊢ ( 𝑇 ∈ LVec ↔ ( 𝑇 ∈ LMod ∧ ( Scalar ‘ 𝑇 ) ∈ DivRing ) ) |
| 12 |
9 10 11
|
3bitr4g |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LVec ↔ 𝑇 ∈ LVec ) ) |