Description: If a scalar product is zero, one of its factors must be zero. ( hvmul0or analog.) (Contributed by NM, 2-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lvecmul0or.v | |
|
lvecmul0or.s | |
||
lvecmul0or.f | |
||
lvecmul0or.k | |
||
lvecmul0or.o | |
||
lvecmul0or.z | |
||
lvecmul0or.w | |
||
lvecmul0or.a | |
||
lvecmul0or.x | |
||
Assertion | lvecvs0or | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecmul0or.v | |
|
2 | lvecmul0or.s | |
|
3 | lvecmul0or.f | |
|
4 | lvecmul0or.k | |
|
5 | lvecmul0or.o | |
|
6 | lvecmul0or.z | |
|
7 | lvecmul0or.w | |
|
8 | lvecmul0or.a | |
|
9 | lvecmul0or.x | |
|
10 | df-ne | |
|
11 | oveq2 | |
|
12 | 11 | ad2antlr | |
13 | 7 | adantr | |
14 | 3 | lvecdrng | |
15 | 13 14 | syl | |
16 | 8 | adantr | |
17 | simpr | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | 4 5 18 19 20 | drnginvrl | |
22 | 15 16 17 21 | syl3anc | |
23 | 22 | oveq1d | |
24 | lveclmod | |
|
25 | 7 24 | syl | |
26 | 25 | adantr | |
27 | 4 5 20 | drnginvrcl | |
28 | 15 16 17 27 | syl3anc | |
29 | 9 | adantr | |
30 | 1 3 2 4 18 | lmodvsass | |
31 | 26 28 16 29 30 | syl13anc | |
32 | 1 3 2 19 | lmodvs1 | |
33 | 25 9 32 | syl2anc | |
34 | 33 | adantr | |
35 | 23 31 34 | 3eqtr3d | |
36 | 35 | adantlr | |
37 | 25 | adantr | |
38 | 37 | adantr | |
39 | 28 | adantlr | |
40 | 3 2 4 6 | lmodvs0 | |
41 | 38 39 40 | syl2anc | |
42 | 12 36 41 | 3eqtr3d | |
43 | 42 | ex | |
44 | 10 43 | biimtrrid | |
45 | 44 | orrd | |
46 | 45 | ex | |
47 | 1 3 2 5 6 | lmod0vs | |
48 | 25 9 47 | syl2anc | |
49 | oveq1 | |
|
50 | 49 | eqeq1d | |
51 | 48 50 | syl5ibrcom | |
52 | 3 2 4 6 | lmodvs0 | |
53 | 25 8 52 | syl2anc | |
54 | oveq2 | |
|
55 | 54 | eqeq1d | |
56 | 53 55 | syl5ibrcom | |
57 | 51 56 | jaod | |
58 | 46 57 | impbid | |