Metamath Proof Explorer


Theorem drnginvrcl

Description: Closure of the multiplicative inverse in a division ring. ( reccl analog). (Contributed by NM, 19-Apr-2014)

Ref Expression
Hypotheses invrcl.b B=BaseR
invrcl.z 0˙=0R
invrcl.i I=invrR
Assertion drnginvrcl RDivRingXBX0˙IXB

Proof

Step Hyp Ref Expression
1 invrcl.b B=BaseR
2 invrcl.z 0˙=0R
3 invrcl.i I=invrR
4 eqid UnitR=UnitR
5 1 4 2 drngunit RDivRingXUnitRXBX0˙
6 drngring RDivRingRRing
7 4 3 1 ringinvcl RRingXUnitRIXB
8 7 ex RRingXUnitRIXB
9 6 8 syl RDivRingXUnitRIXB
10 5 9 sylbird RDivRingXBX0˙IXB
11 10 3impib RDivRingXBX0˙IXB