| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invrcl.b |
|- B = ( Base ` R ) |
| 2 |
|
invrcl.z |
|- .0. = ( 0g ` R ) |
| 3 |
|
invrcl.i |
|- I = ( invr ` R ) |
| 4 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 5 |
1 4 2
|
drngunit |
|- ( R e. DivRing -> ( X e. ( Unit ` R ) <-> ( X e. B /\ X =/= .0. ) ) ) |
| 6 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 7 |
4 3 1
|
ringinvcl |
|- ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( I ` X ) e. B ) |
| 8 |
7
|
ex |
|- ( R e. Ring -> ( X e. ( Unit ` R ) -> ( I ` X ) e. B ) ) |
| 9 |
6 8
|
syl |
|- ( R e. DivRing -> ( X e. ( Unit ` R ) -> ( I ` X ) e. B ) ) |
| 10 |
5 9
|
sylbird |
|- ( R e. DivRing -> ( ( X e. B /\ X =/= .0. ) -> ( I ` X ) e. B ) ) |
| 11 |
10
|
3impib |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) e. B ) |