Description: A division ring is a ring. (Contributed by NM, 8-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | drngring | |- ( R e. DivRing -> R e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 2 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 3 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 4 | 1 2 3 | isdrng | |- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) |
| 5 | 4 | simplbi | |- ( R e. DivRing -> R e. Ring ) |