Metamath Proof Explorer


Theorem drngringd

Description: A division ring is a ring. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis drngringd.1
|- ( ph -> R e. DivRing )
Assertion drngringd
|- ( ph -> R e. Ring )

Proof

Step Hyp Ref Expression
1 drngringd.1
 |-  ( ph -> R e. DivRing )
2 drngring
 |-  ( R e. DivRing -> R e. Ring )
3 1 2 syl
 |-  ( ph -> R e. Ring )