Metamath Proof Explorer


Theorem drnggrpd

Description: A division ring is a group. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis drngringd.1
|- ( ph -> R e. DivRing )
Assertion drnggrpd
|- ( ph -> R e. Grp )

Proof

Step Hyp Ref Expression
1 drngringd.1
 |-  ( ph -> R e. DivRing )
2 1 drngringd
 |-  ( ph -> R e. Ring )
3 2 ringgrpd
 |-  ( ph -> R e. Grp )