Metamath Proof Explorer


Theorem drnggrpd

Description: A division ring is a group. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis drngringd.1 ( 𝜑𝑅 ∈ DivRing )
Assertion drnggrpd ( 𝜑𝑅 ∈ Grp )

Proof

Step Hyp Ref Expression
1 drngringd.1 ( 𝜑𝑅 ∈ DivRing )
2 1 drngringd ( 𝜑𝑅 ∈ Ring )
3 2 ringgrpd ( 𝜑𝑅 ∈ Grp )