Metamath Proof Explorer


Theorem drnggrpd

Description: A division ring is a group. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis drngringd.1 φ R DivRing
Assertion drnggrpd φ R Grp

Proof

Step Hyp Ref Expression
1 drngringd.1 φ R DivRing
2 1 drngringd φ R Ring
3 2 ringgrpd φ R Grp