Metamath Proof Explorer
Description: Closure of the multiplicative inverse in a division ring. ( reccld analog). (Contributed by SN, 14-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
invrcl.b |
|
|
|
invrcl.z |
|
|
|
invrcl.i |
|
|
|
drnginvrcld.r |
|
|
|
drnginvrcld.x |
|
|
|
drnginvrcld.1 |
|
|
Assertion |
drnginvrcld |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invrcl.b |
|
| 2 |
|
invrcl.z |
|
| 3 |
|
invrcl.i |
|
| 4 |
|
drnginvrcld.r |
|
| 5 |
|
drnginvrcld.x |
|
| 6 |
|
drnginvrcld.1 |
|
| 7 |
1 2 3
|
drnginvrcl |
|
| 8 |
4 5 6 7
|
syl3anc |
|