Metamath Proof Explorer


Theorem drnginvrcld

Description: Closure of the multiplicative inverse in a division ring. ( reccld analog). (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses invrcl.b B=BaseR
invrcl.z 0˙=0R
invrcl.i I=invrR
drnginvrcld.r φRDivRing
drnginvrcld.x φXB
drnginvrcld.1 φX0˙
Assertion drnginvrcld φIXB

Proof

Step Hyp Ref Expression
1 invrcl.b B=BaseR
2 invrcl.z 0˙=0R
3 invrcl.i I=invrR
4 drnginvrcld.r φRDivRing
5 drnginvrcld.x φXB
6 drnginvrcld.1 φX0˙
7 1 2 3 drnginvrcl RDivRingXBX0˙IXB
8 4 5 6 7 syl3anc φIXB