Metamath Proof Explorer


Theorem reccld

Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
reccld.2 φA0
Assertion reccld φ1A

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 reccld.2 φA0
3 reccl AA01A
4 1 2 3 syl2anc φ1A