Metamath Proof Explorer


Theorem drnggrp

Description: A division ring is a group. (Contributed by NM, 8-Sep-2011)

Ref Expression
Assertion drnggrp
|- ( R e. DivRing -> R e. Grp )

Proof

Step Hyp Ref Expression
1 drngring
 |-  ( R e. DivRing -> R e. Ring )
2 ringgrp
 |-  ( R e. Ring -> R e. Grp )
3 1 2 syl
 |-  ( R e. DivRing -> R e. Grp )