Metamath Proof Explorer


Theorem drnggrp

Description: A division ring is a group. (Contributed by NM, 8-Sep-2011)

Ref Expression
Assertion drnggrp ( 𝑅 ∈ DivRing → 𝑅 ∈ Grp )

Proof

Step Hyp Ref Expression
1 drngring ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )
2 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
3 1 2 syl ( 𝑅 ∈ DivRing → 𝑅 ∈ Grp )