| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invrcl.b |
|- B = ( Base ` R ) |
| 2 |
|
invrcl.z |
|- .0. = ( 0g ` R ) |
| 3 |
|
invrcl.i |
|- I = ( invr ` R ) |
| 4 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 5 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 6 |
5 3
|
unitinvcl |
|- ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( I ` X ) e. ( Unit ` R ) ) |
| 7 |
6
|
ex |
|- ( R e. Ring -> ( X e. ( Unit ` R ) -> ( I ` X ) e. ( Unit ` R ) ) ) |
| 8 |
4 7
|
syl |
|- ( R e. DivRing -> ( X e. ( Unit ` R ) -> ( I ` X ) e. ( Unit ` R ) ) ) |
| 9 |
1 5 2
|
drngunit |
|- ( R e. DivRing -> ( X e. ( Unit ` R ) <-> ( X e. B /\ X =/= .0. ) ) ) |
| 10 |
1 5 2
|
drngunit |
|- ( R e. DivRing -> ( ( I ` X ) e. ( Unit ` R ) <-> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) ) |
| 11 |
8 9 10
|
3imtr3d |
|- ( R e. DivRing -> ( ( X e. B /\ X =/= .0. ) -> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) ) |
| 12 |
11
|
3impib |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) |
| 13 |
12
|
simprd |
|- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) =/= .0. ) |