Metamath Proof Explorer


Theorem unitinvcl

Description: The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitinvcl.1
|- U = ( Unit ` R )
unitinvcl.2
|- I = ( invr ` R )
Assertion unitinvcl
|- ( ( R e. Ring /\ X e. U ) -> ( I ` X ) e. U )

Proof

Step Hyp Ref Expression
1 unitinvcl.1
 |-  U = ( Unit ` R )
2 unitinvcl.2
 |-  I = ( invr ` R )
3 eqid
 |-  ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U )
4 1 3 unitgrp
 |-  ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp )
5 1 3 unitgrpbas
 |-  U = ( Base ` ( ( mulGrp ` R ) |`s U ) )
6 1 3 2 invrfval
 |-  I = ( invg ` ( ( mulGrp ` R ) |`s U ) )
7 5 6 grpinvcl
 |-  ( ( ( ( mulGrp ` R ) |`s U ) e. Grp /\ X e. U ) -> ( I ` X ) e. U )
8 4 7 sylan
 |-  ( ( R e. Ring /\ X e. U ) -> ( I ` X ) e. U )