| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitinvcl.1 |
|- U = ( Unit ` R ) |
| 2 |
|
unitinvcl.2 |
|- I = ( invr ` R ) |
| 3 |
|
eqid |
|- ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) |
| 4 |
1 3
|
unitgrp |
|- ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
| 5 |
1 3
|
unitgrpbas |
|- U = ( Base ` ( ( mulGrp ` R ) |`s U ) ) |
| 6 |
1 3 2
|
invrfval |
|- I = ( invg ` ( ( mulGrp ` R ) |`s U ) ) |
| 7 |
5 6
|
grpinvinv |
|- ( ( ( ( mulGrp ` R ) |`s U ) e. Grp /\ X e. U ) -> ( I ` ( I ` X ) ) = X ) |
| 8 |
4 7
|
sylan |
|- ( ( R e. Ring /\ X e. U ) -> ( I ` ( I ` X ) ) = X ) |