Description: The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitinvcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitinvcl.2 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| Assertion | unitinvinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) = 𝑋 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unitinvcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitinvcl.2 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | |
| 4 | 1 3 | unitgrp | ⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ) | 
| 5 | 1 3 | unitgrpbas | ⊢ 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) | 
| 6 | 1 3 2 | invrfval | ⊢ 𝐼 = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) | 
| 7 | 5 6 | grpinvinv | ⊢ ( ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) = 𝑋 ) | 
| 8 | 4 7 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |