Metamath Proof Explorer


Theorem drnginvrn0

Description: The multiplicative inverse in a division ring is nonzero. ( recne0 analog). (Contributed by NM, 19-Apr-2014)

Ref Expression
Hypotheses invrcl.b B=BaseR
invrcl.z 0˙=0R
invrcl.i I=invrR
Assertion drnginvrn0 RDivRingXBX0˙IX0˙

Proof

Step Hyp Ref Expression
1 invrcl.b B=BaseR
2 invrcl.z 0˙=0R
3 invrcl.i I=invrR
4 drngring RDivRingRRing
5 eqid UnitR=UnitR
6 5 3 unitinvcl RRingXUnitRIXUnitR
7 6 ex RRingXUnitRIXUnitR
8 4 7 syl RDivRingXUnitRIXUnitR
9 1 5 2 drngunit RDivRingXUnitRXBX0˙
10 1 5 2 drngunit RDivRingIXUnitRIXBIX0˙
11 8 9 10 3imtr3d RDivRingXBX0˙IXBIX0˙
12 11 3impib RDivRingXBX0˙IXBIX0˙
13 12 simprd RDivRingXBX0˙IX0˙