| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
|
| 2 |
|
oveq2 |
|
| 3 |
2
|
ad2antlr |
|
| 4 |
|
recid2 |
|
| 5 |
4
|
oveq1d |
|
| 6 |
5
|
adantlr |
|
| 7 |
|
reccl |
|
| 8 |
7
|
adantlr |
|
| 9 |
|
simpll |
|
| 10 |
|
simplr |
|
| 11 |
|
ax-hvmulass |
|
| 12 |
8 9 10 11
|
syl3anc |
|
| 13 |
|
ax-hvmulid |
|
| 14 |
13
|
ad2antlr |
|
| 15 |
6 12 14
|
3eqtr3d |
|
| 16 |
15
|
adantlr |
|
| 17 |
|
hvmul0 |
|
| 18 |
7 17
|
syl |
|
| 19 |
18
|
adantlr |
|
| 20 |
19
|
adantlr |
|
| 21 |
3 16 20
|
3eqtr3d |
|
| 22 |
21
|
ex |
|
| 23 |
1 22
|
biimtrrid |
|
| 24 |
23
|
orrd |
|
| 25 |
24
|
ex |
|
| 26 |
|
ax-hvmul0 |
|
| 27 |
|
oveq1 |
|
| 28 |
27
|
eqeq1d |
|
| 29 |
26 28
|
syl5ibrcom |
|
| 30 |
29
|
adantl |
|
| 31 |
|
hvmul0 |
|
| 32 |
|
oveq2 |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
31 33
|
syl5ibrcom |
|
| 35 |
34
|
adantr |
|
| 36 |
30 35
|
jaod |
|
| 37 |
25 36
|
impbid |
|