Metamath Proof Explorer


Theorem hvsubid

Description: Subtraction of a vector from itself. (Contributed by NM, 30-May-1999) (New usage is discouraged.)

Ref Expression
Assertion hvsubid AA-A=0

Proof

Step Hyp Ref Expression
1 ax-hvmulid A1A=A
2 1 oveq1d A1A+-1A=A+-1A
3 ax-1cn 1
4 neg1cn 1
5 ax-hvdistr2 11A1+-1A=1A+-1A
6 3 4 5 mp3an12 A1+-1A=1A+-1A
7 hvsubval AAA-A=A+-1A
8 7 anidms AA-A=A+-1A
9 2 6 8 3eqtr4rd AA-A=1+-1A
10 1pneg1e0 1+-1=0
11 10 oveq1i 1+-1A=0A
12 9 11 eqtrdi AA-A=0A
13 ax-hvmul0 A0A=0
14 12 13 eqtrd AA-A=0