| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvecmul0or.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lvecmul0or.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
lvecmul0or.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
lvecmul0or.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
lvecmul0or.o |
⊢ 𝑂 = ( 0g ‘ 𝐹 ) |
| 6 |
|
lvecmul0or.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 7 |
|
lvecmul0or.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 8 |
|
lvecmul0or.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 9 |
|
lvecmul0or.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝑂 ↔ ¬ 𝐴 = 𝑂 ) |
| 11 |
|
oveq2 |
⊢ ( ( 𝐴 · 𝑋 ) = 0 → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · 0 ) ) |
| 12 |
11
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · 0 ) ) |
| 13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝑊 ∈ LVec ) |
| 14 |
3
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝐹 ∈ DivRing ) |
| 16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝐴 ∈ 𝐾 ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝐴 ≠ 𝑂 ) |
| 18 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 19 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 20 |
|
eqid |
⊢ ( invr ‘ 𝐹 ) = ( invr ‘ 𝐹 ) |
| 21 |
4 5 18 19 20
|
drnginvrl |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
| 22 |
15 16 17 21
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
| 23 |
22
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) |
| 24 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 25 |
7 24
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝑊 ∈ LMod ) |
| 27 |
4 5 20
|
drnginvrcl |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 𝑂 ) → ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 28 |
15 16 17 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → 𝑋 ∈ 𝑉 ) |
| 30 |
1 3 2 4 18
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
| 31 |
26 28 16 29 30
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
| 32 |
1 3 2 19
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 33 |
25 9 32
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 35 |
23 31 34
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) = 𝑋 ) |
| 36 |
35
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) = 𝑋 ) |
| 37 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) → 𝑊 ∈ LMod ) |
| 38 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → 𝑊 ∈ LMod ) |
| 39 |
28
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 40 |
3 2 4 6
|
lmodvs0 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · 0 ) = 0 ) |
| 41 |
38 39 40
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · 0 ) = 0 ) |
| 42 |
12 36 41
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) ∧ 𝐴 ≠ 𝑂 ) → 𝑋 = 0 ) |
| 43 |
42
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) → ( 𝐴 ≠ 𝑂 → 𝑋 = 0 ) ) |
| 44 |
10 43
|
biimtrrid |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) → ( ¬ 𝐴 = 𝑂 → 𝑋 = 0 ) ) |
| 45 |
44
|
orrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) = 0 ) → ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) |
| 46 |
45
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = 0 → ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) ) |
| 47 |
1 3 2 5 6
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 · 𝑋 ) = 0 ) |
| 48 |
25 9 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 · 𝑋 ) = 0 ) |
| 49 |
|
oveq1 |
⊢ ( 𝐴 = 𝑂 → ( 𝐴 · 𝑋 ) = ( 𝑂 · 𝑋 ) ) |
| 50 |
49
|
eqeq1d |
⊢ ( 𝐴 = 𝑂 → ( ( 𝐴 · 𝑋 ) = 0 ↔ ( 𝑂 · 𝑋 ) = 0 ) ) |
| 51 |
48 50
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐴 = 𝑂 → ( 𝐴 · 𝑋 ) = 0 ) ) |
| 52 |
3 2 4 6
|
lmodvs0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 · 0 ) = 0 ) |
| 53 |
25 8 52
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 · 0 ) = 0 ) |
| 54 |
|
oveq2 |
⊢ ( 𝑋 = 0 → ( 𝐴 · 𝑋 ) = ( 𝐴 · 0 ) ) |
| 55 |
54
|
eqeq1d |
⊢ ( 𝑋 = 0 → ( ( 𝐴 · 𝑋 ) = 0 ↔ ( 𝐴 · 0 ) = 0 ) ) |
| 56 |
53 55
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑋 = 0 → ( 𝐴 · 𝑋 ) = 0 ) ) |
| 57 |
51 56
|
jaod |
⊢ ( 𝜑 → ( ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) → ( 𝐴 · 𝑋 ) = 0 ) ) |
| 58 |
46 57
|
impbid |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = 0 ↔ ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) ) |