| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvecmul0or.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lvecmul0or.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
lvecmul0or.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
lvecmul0or.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
lvecmul0or.o |
⊢ 𝑂 = ( 0g ‘ 𝐹 ) |
| 6 |
|
lvecmul0or.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 7 |
|
lvecmul0or.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 8 |
|
lvecmul0or.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 9 |
|
lvecmul0or.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
lvecvs0or |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = 0 ↔ ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) ) |
| 11 |
10
|
necon3abid |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) ≠ 0 ↔ ¬ ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) ) |
| 12 |
|
neanior |
⊢ ( ( 𝐴 ≠ 𝑂 ∧ 𝑋 ≠ 0 ) ↔ ¬ ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) |
| 13 |
11 12
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) ≠ 0 ↔ ( 𝐴 ≠ 𝑂 ∧ 𝑋 ≠ 0 ) ) ) |