| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lssvs0or.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lssvs0or.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
lssvs0or.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
lssvs0or.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
lssvs0or.o |
⊢ 0 = ( 0g ‘ 𝐹 ) |
| 6 |
|
lssvs0or.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 7 |
|
lssvs0or.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 8 |
|
lssvs0or.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 9 |
|
lssvs0or.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
lssvs0or.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 11 |
3
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 12 |
7 11
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝐹 ∈ DivRing ) |
| 14 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ 𝐾 ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
| 16 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 17 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 18 |
|
eqid |
⊢ ( invr ‘ 𝐹 ) = ( invr ‘ 𝐹 ) |
| 19 |
4 5 16 17 18
|
drnginvrl |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
| 20 |
13 14 15 19
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
| 21 |
20
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) |
| 22 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 23 |
7 22
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝑊 ∈ LMod ) |
| 25 |
4 5 18
|
drnginvrcl |
⊢ ( ( 𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 26 |
13 14 15 25
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 27 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝑋 ∈ 𝑉 ) |
| 28 |
1 3 2 4 16
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
| 29 |
24 26 14 27 28
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑋 ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
| 30 |
1 3 2 17
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 31 |
24 27 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 32 |
21 29 31
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝑋 = ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
| 33 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝑈 ∈ 𝑆 ) |
| 34 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 · 𝑋 ) ∈ 𝑈 ) |
| 35 |
3 2 4 6
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ∈ 𝑈 ) |
| 36 |
24 33 26 34 35
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝐴 ) · ( 𝐴 · 𝑋 ) ) ∈ 𝑈 ) |
| 37 |
32 36
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) ∧ 𝐴 ≠ 0 ) → 𝑋 ∈ 𝑈 ) |
| 38 |
37
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) → ( 𝐴 ≠ 0 → 𝑋 ∈ 𝑈 ) ) |
| 39 |
38
|
necon1bd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) → ( ¬ 𝑋 ∈ 𝑈 → 𝐴 = 0 ) ) |
| 40 |
39
|
orrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) → ( 𝑋 ∈ 𝑈 ∨ 𝐴 = 0 ) ) |
| 41 |
40
|
orcomd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑈 ) → ( 𝐴 = 0 ∨ 𝑋 ∈ 𝑈 ) ) |
| 42 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝐴 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 44 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 45 |
1 3 2 5 44
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 46 |
23 9 45
|
syl2anc |
⊢ ( 𝜑 → ( 0 · 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 47 |
44 6
|
lss0cl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑊 ) ∈ 𝑈 ) |
| 48 |
23 8 47
|
syl2anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) ∈ 𝑈 ) |
| 49 |
46 48
|
eqeltrd |
⊢ ( 𝜑 → ( 0 · 𝑋 ) ∈ 𝑈 ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 0 · 𝑋 ) ∈ 𝑈 ) |
| 51 |
43 50
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝐴 · 𝑋 ) ∈ 𝑈 ) |
| 52 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 53 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 54 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝐴 ∈ 𝐾 ) |
| 55 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
| 56 |
3 2 4 6
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑈 ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑈 ) |
| 57 |
52 53 54 55 56
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( 𝐴 · 𝑋 ) ∈ 𝑈 ) |
| 58 |
51 57
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝐴 = 0 ∨ 𝑋 ∈ 𝑈 ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑈 ) |
| 59 |
41 58
|
impbida |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) ∈ 𝑈 ↔ ( 𝐴 = 0 ∨ 𝑋 ∈ 𝑈 ) ) ) |