Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | neanior | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ) ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐶 = 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne | ⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) | |
2 | df-ne | ⊢ ( 𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷 ) | |
3 | 1 2 | anbi12i | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ) ↔ ( ¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷 ) ) |
4 | pm4.56 | ⊢ ( ( ¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷 ) ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐶 = 𝐷 ) ) | |
5 | 3 4 | bitri | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ) ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐶 = 𝐷 ) ) |