Metamath Proof Explorer


Theorem neanior

Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007)

Ref Expression
Assertion neanior
|- ( ( A =/= B /\ C =/= D ) <-> -. ( A = B \/ C = D ) )

Proof

Step Hyp Ref Expression
1 df-ne
 |-  ( A =/= B <-> -. A = B )
2 df-ne
 |-  ( C =/= D <-> -. C = D )
3 1 2 anbi12i
 |-  ( ( A =/= B /\ C =/= D ) <-> ( -. A = B /\ -. C = D ) )
4 pm4.56
 |-  ( ( -. A = B /\ -. C = D ) <-> -. ( A = B \/ C = D ) )
5 3 4 bitri
 |-  ( ( A =/= B /\ C =/= D ) <-> -. ( A = B \/ C = D ) )