Metamath Proof Explorer


Theorem phlipf

Description: The inner product operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses ipffn.1 V=BaseW
ipffn.2 ,˙=ifW
phlipf.s S=ScalarW
phlipf.k K=BaseS
Assertion phlipf WPreHil,˙:V×VK

Proof

Step Hyp Ref Expression
1 ipffn.1 V=BaseW
2 ipffn.2 ,˙=ifW
3 phlipf.s S=ScalarW
4 phlipf.k K=BaseS
5 eqid 𝑖W=𝑖W
6 3 5 1 4 ipcl WPreHilxVyVx𝑖WyK
7 6 3expb WPreHilxVyVx𝑖WyK
8 7 ralrimivva WPreHilxVyVx𝑖WyK
9 1 5 2 ipffval ,˙=xV,yVx𝑖Wy
10 9 fmpo xVyVx𝑖WyK,˙:V×VK
11 8 10 sylib WPreHil,˙:V×VK