| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipffn.1 |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
ipffn.2 |
⊢ , = ( ·if ‘ 𝑊 ) |
| 3 |
|
phlipf.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
phlipf.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 5 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 6 |
3 5 1 4
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ 𝐾 ) |
| 7 |
6
|
3expb |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ 𝐾 ) |
| 8 |
7
|
ralrimivva |
⊢ ( 𝑊 ∈ PreHil → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ 𝐾 ) |
| 9 |
1 5 2
|
ipffval |
⊢ , = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 10 |
9
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ 𝐾 ↔ , : ( 𝑉 × 𝑉 ) ⟶ 𝐾 ) |
| 11 |
8 10
|
sylib |
⊢ ( 𝑊 ∈ PreHil → , : ( 𝑉 × 𝑉 ) ⟶ 𝐾 ) |