| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ip2eq.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 2 |
|
ip2eq.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) ) |
| 4 |
3
|
ralrimivw |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) ) |
| 5 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 6 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
| 7 |
2 6
|
lmodvsubcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) |
| 8 |
5 7
|
syl3an1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) → ( 𝑥 , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) → ( 𝑥 , 𝐵 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) → ( ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) ↔ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 12 |
11
|
rspcv |
⊢ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 13 |
8 12
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 14 |
|
simp1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ PreHil ) |
| 15 |
|
simp2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
| 16 |
|
simp3 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
| 17 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 18 |
|
eqid |
⊢ ( -g ‘ ( Scalar ‘ 𝑊 ) ) = ( -g ‘ ( Scalar ‘ 𝑊 ) ) |
| 19 |
17 1 2 6 18
|
ipsubdi |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 20 |
14 8 15 16 19
|
syl13anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 21 |
20
|
eqeq1d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 22 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 24 |
17 1 2 22 23
|
ipeq0 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ) → ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) = ( 0g ‘ 𝑊 ) ) ) |
| 25 |
14 8 24
|
syl2anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) = ( 0g ‘ 𝑊 ) ) ) |
| 26 |
21 25
|
bitr3d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) = ( 0g ‘ 𝑊 ) ) ) |
| 27 |
5
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 28 |
17
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 30 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 31 |
17 1 2 30
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 32 |
14 8 15 31
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 33 |
17 1 2 30
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 34 |
14 8 16 33
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 35 |
30 22 18
|
grpsubeq0 |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 36 |
29 32 34 35
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ) ) |
| 37 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
| 38 |
5 37
|
syl |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ Grp ) |
| 39 |
2 23 6
|
grpsubeq0 |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) = ( 0g ‘ 𝑊 ) ↔ 𝐴 = 𝐵 ) ) |
| 40 |
38 39
|
syl3an1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) = ( 0g ‘ 𝑊 ) ↔ 𝐴 = 𝐵 ) ) |
| 41 |
26 36 40
|
3bitr3d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐴 ) = ( ( 𝐴 ( -g ‘ 𝑊 ) 𝐵 ) , 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 42 |
13 41
|
sylibd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 43 |
4 42
|
impbid2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐴 ) = ( 𝑥 , 𝐵 ) ) ) |