Metamath Proof Explorer


Definition df-ipf

Description: Define the inner product function. Usually we will use .i directly instead of .if , and they have the same behavior in most cases. The main advantage of .if is that it is a guaranteed function ( ipffn ), while .i only has closure ( ipcl ). (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion df-ipf if=gVxBaseg,yBasegx𝑖gy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cipf classif
1 vg setvarg
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvarg
6 5 4 cfv classBaseg
7 vy setvary
8 3 cv setvarx
9 cip class𝑖
10 5 9 cfv class𝑖g
11 7 cv setvary
12 8 11 10 co classx𝑖gy
13 3 7 6 6 12 cmpo classxBaseg,yBasegx𝑖gy
14 1 2 13 cmpt classgVxBaseg,yBasegx𝑖gy
15 0 14 wceq wffif=gVxBaseg,yBasegx𝑖gy