Metamath Proof Explorer


Theorem rimf1o

Description: An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses rhmf1o.b B=BaseR
rhmf1o.c C=BaseS
Assertion rimf1o FRRingIsoSF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 rhmf1o.b B=BaseR
2 rhmf1o.c C=BaseS
3 1 2 isrim FRRingIsoSFRRingHomSF:B1-1 ontoC
4 3 simprbi FRRingIsoSF:B1-1 ontoC