Description: An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmf1o.b | |- B = ( Base ` R ) |
|
| rhmf1o.c | |- C = ( Base ` S ) |
||
| Assertion | rimf1o | |- ( F e. ( R RingIso S ) -> F : B -1-1-onto-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmf1o.b | |- B = ( Base ` R ) |
|
| 2 | rhmf1o.c | |- C = ( Base ` S ) |
|
| 3 | 1 2 | isrim | |- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) ) |
| 4 | 3 | simprbi | |- ( F e. ( R RingIso S ) -> F : B -1-1-onto-> C ) |