Metamath Proof Explorer


Theorem rimrhmOLD

Description: Obsolete version of rimrhm as of 12-Jan-2025. (Contributed by AV, 22-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rhmf1o.b
|- B = ( Base ` R )
rhmf1o.c
|- C = ( Base ` S )
Assertion rimrhmOLD
|- ( F e. ( R RingIso S ) -> F e. ( R RingHom S ) )

Proof

Step Hyp Ref Expression
1 rhmf1o.b
 |-  B = ( Base ` R )
2 rhmf1o.c
 |-  C = ( Base ` S )
3 1 2 isrim
 |-  ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) )
4 3 simplbi
 |-  ( F e. ( R RingIso S ) -> F e. ( R RingHom S ) )