| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmf1o.b |
|- B = ( Base ` R ) |
| 2 |
|
rhmf1o.c |
|- C = ( Base ` S ) |
| 3 |
|
isrim0 |
|- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) ) |
| 4 |
1 2
|
rhmf1o |
|- ( F e. ( R RingHom S ) -> ( F : B -1-1-onto-> C <-> `' F e. ( S RingHom R ) ) ) |
| 5 |
4
|
bicomd |
|- ( F e. ( R RingHom S ) -> ( `' F e. ( S RingHom R ) <-> F : B -1-1-onto-> C ) ) |
| 6 |
5
|
pm5.32i |
|- ( ( F e. ( R RingHom S ) /\ `' F e. ( S RingHom R ) ) <-> ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) ) |
| 7 |
3 6
|
bitri |
|- ( F e. ( R RingIso S ) <-> ( F e. ( R RingHom S ) /\ F : B -1-1-onto-> C ) ) |